

# Vodik kot eden izmed pomembnih dejavnikov zelenega prehoda -Sodelovanje različnih deležnikov v NAHV

#### Tomaž Katrašnik in ekipa LICeM

Univerza v Ljubljani

Fakulteta za strojništvo

Laboratorij za motorje z notranjim zgorevanjem in elektromobilnost - LICeM

http://lab.fs.uni-lj.si/LICeM/



- The role of academic partners in NAHV project
- University of Ljubljana Project references
- Sector coupling
- Electrochemical devices
- Observers and SoX Prediction
- Model based planning and design of advanced energy systems
- LCA



| Work package number | 2                                 |  |
|---------------------|-----------------------------------|--|
| Work package title  | Hydrogen Valley System Definition |  |

Task 2.4 Digital twin. TL: FBK, PP: UNITS, UNIRI, UL, HSE . [D: M6 – M55]



Task 2.5 Monitoring TL: UNI TS, PP: UNIRI, FBK, UL [D: M8 – M72]



| Work package number | 7                                          |
|---------------------|--------------------------------------------|
| Work package title  | Communication, Education and Dissemination |

#### Task 7.3 EDUCATION. TL: UNIRI, PP: UNITS, UL [D: M1 – M72]

Education related activities will be addressed to promote the training of future professionals and experts in the field of hydrogen technologies.

7.3.1 Vocational training programs Sub TL UNIRI, PP: ALL [D: M12–M72]

7.3.2 Macro-Regional Competence Center for Hydrogen Research and Education TL: UNIRI. PP: GITONE, UNITES, UL [D: M1 – M72]

Task 7.3.4 Itinerant summer/winter school PhD students. Sub TL:UNIRI. PP UNITS, UL[D:M1-M72]



| Work package number | 9                                                                     |
|---------------------|-----------------------------------------------------------------------|
| Work package title  | Inter-regional hydrogen R&D&I development joint action plan and North |
|                     | Adriatic Hydrogen Valley master plan & business model                 |

**T9.2 Information gathering and needs' analysis: field and desk. TL**: AREA. **PP**: ECUBES, UNITS, UL, UNIRI [**D M4-29 M60-M72**]



### WPI0

| Work package number | 10                                                                         |
|---------------------|----------------------------------------------------------------------------|
| Work package title  | Technical demonstrator plants monitoring, identification and assessment of |
|                     | social, economic and environmental impacts, including water utilization    |

Task 10.1 Methodology TL: UNITS. PP: UR, UL [D: M1-M18]

Task 10.2 Monitoring of the production system TL: UNITS. PP: UR, UL [D: M36-M72]



Task 10.3 Monitoring of the storage system TL: UR, PP: UL, UNITS [D: M36-M72]

Task 10.4 Monitoring of the distribution system TL: UL, PP: UNIRI, UNITS [D: M36-M72]

Task 10.5 Monitoring and analysis of the final user hydrogen demand profile and energy efficiency TL:

UNITS, PP: UR, UL [D: M36-M72]



#### WPI0

Task 10.6 Environmental impact assessment (e.g. including LCA) TL: UL, PP: UNITS, UNIRI [D:M6-M72]

Task 10.7 Social impact analysis TL: UNIRI, PP: UL, UNITS [D: M12-M72]



# WPI0

Task 10.8 Cost-benefit analysis TL: UNIRI, PP: UL, UNITS [D: M12-M72]



# WPII

| Work package number | 11                                           |
|---------------------|----------------------------------------------|
| Work package title  | NAHV EXPLOITATION AND REPLICATION ACTIVITIES |

Task 11.5 Replication package & laboratories TL: FHA PP: FBK, UNITS, UNIRI, UL [D: M25-M72]



- The role of academic partners in NAHV project
- University of Ljubljana Project references
- Sector coupling
- Electrochemical devices
- Observers and SoX Prediction
- Model based planning and design of advanced energy systems
- LCA



# University of Ljubljana - Project references

| 2023-2029: | EC - Horizon Europe (HORIZON-JTI-CLEANH2-2022-2): NAHV - NORTH ADRIATIC HYDROGEN VALLEY                                                                                                                                              |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2023-2026: | EC - Horizon Europe (HORIZON-JTI-CLEANH2-2022-03-01): RealHyFC - REliable durAbLe high-power HYdrogen fueled PEM Fuel Cell stacks                                                                                                    |
| 2023-2026: | EC - Horizon Europe (HORIZON-JTI-CLEANH2-2022-03-02): MEAsureD - Advanced MEAs ensuring high efficiency HDV                                                                                                                          |
| 2022-2025: | European Defence Agency: INDY - Energy Independent and Efficient Deployable Military Camps                                                                                                                                           |
| 2022-2024: | CEA (Le Commissariat à l'énergie atomique et aux énergies alternatives) – ARRS: Multiscale modelling of degradation phenomena in membrane electrode assemblies of proton exchange membrane fuel cells produced of advanced materials |
| 2021-2024: | EC – FCH-JU – H2020: MoreLife - Material, Operating strategy and REliability optimisation for LIFEtime improvements in heavy duty trucks                                                                                             |
| 2018-2024: | Christian Doppler Research Association, Austria: Christian Doppler Laboratory on Efficient Control and Monitoring of Automotive Powertrain Components with the lead institution TU Vienna                                            |



#### University of Ljubljana - Project references

| 2023-2027: | EC – Horizon Europe (HORIZON-JTI-CLEANH2-2022-2): HYScale - Economic green hydrogen production at scale via a   |
|------------|-----------------------------------------------------------------------------------------------------------------|
|            | novel, critical raw material free, highly efficient and low-capex advanced alkaline membrane water electrolysis |
|            | technology                                                                                                      |

2023-2026: EC – Horizon Europe (HORIZON-JTI-CLEANH2-2022-01-04): PilotSOEL - Advanced Processes Enabling Low cost and High Performing Large Scale Solid Oxide Electrolyser Production

2023-2026: EC – Horizon Europe (HORIZON-JTI-CLEANH2-2022-02-04): SINGLE - Electrified Single Stage Ammonia Cracking to Compressed Hydrogen

2021-2024: EC – Horizon Europe (H2020-JTI-FCH-2020-1): eGHOST - Establishing Eco-design Guidelines for Hydrogen Systems and Technology



- The role of academic partners in NAHV project
- University of Ljubljana Project references
- Sector coupling
- Electrochemical devices
- Observers and SoX Prediction
- Model based planning and design of advanced energy systems
- LCA



#### Electricity-to-Wheel



European Federation for Transport and Environment AISBL: Roadmap to decarbonizing European Cars

Figure 5: Efficiency of different passenger cars technology pathways based on renewable electricity. Details of assumptions to produce this graph in Appendix 3.



#### Why H<sub>2</sub> in heavy duty transport?

# EXAMPLE FOR TRUCKS: HYDROGEN FUEL CELL POWERTRAINS ARE A TECHNICALLY ADVANCED ZERO EMISSION TECHNOLOGY AND COST COMPETITIVE FOR HEAVY TRANSPORT







# A selected example of grid balancing





- The role of academic partners in NAHV project
- University of Ljubljana Project references
- Sector coupling
- Electrochemical devices
- Observers and SoX Prediction
- Model based planning and design of advanced energy systems
- LCA



### A few examples of FC degradation – impact of harsh environment?









# Chemical membrane degradation

Frühwirt P, Kregar A, Törring JT, Katrašnik T, Gescheidt G. Holistic approach to chemical degradation of Nafion membranes in fuel cells: modelling and predictions. *Phys Chem Chem Phys* 2020;22:5647-66. doi:10.1039/C9CP04986J.



# Catalyst degradation



#### Experimental and modelled data of catalyst particle growth

KREGAR, Ambrož,... KATRAŠNIK, Tomaž. Applied energy. 2020, vol. 263, 17. https://www.sciencedirect.com/science/article/pii/S0306261920300593, DOI: 10.1016/j.apenergy.2020.114547



- The role of academic partners in NAHV project
- University of Ljubljana Project references
- Sector coupling
- Electrochemical devices
- Observers and SoX Prediction
- Model based planning and design of advanced energy systems
- LCA



#### State observer: How it works (enablers for model based digital shadows and twins)





- The role of academic partners in NAHV project
- University of Ljubljana Project references
- Sector coupling
- Electrochemical devices
- Observers and SoX Prediction
- Model based planning and design of advanced energy systems
- LCA



# Advanced energy system





- The role of academic partners in NAHV project
- University of Ljubljana Project references
- Sector coupling
- Electrochemical devices
- Observers and SoX Prediction
- Model based planning and design of advanced energy systems
- LCA



#### Carbon footprint



Fig. 9 — Carbon footprint of individual technologies.





# Thank you for your attention